

Seashore

Quick start

The Seashore library enables Pythonic command-based automation.

Creating an executor is easy:

from seashore import Executor, Shell, NO_VALUE
xctor = seashore.Executor(seashore.Shell())

Running commands looks like calling Python functions.
In batch mode, commands will return their standard output and error.

base, dummy = xctr.git.rev_parse(show_toplevel=seashore.NO_VALUE,
).batch(cwd=git_dir)

If an error occurs, an exception will be raised.
If we just want to exit if any error is raised, but not leave a traceback,

def main():
 with seashore.autocode_exit():
 call_functions()
 run_executors()

The context will auto translate process errors to system exit.

There are also nice helpers, like in_docker_machine,
which will return an executor where the docker commands are all pointed
at a given docker machine.

dock_xctr = xctr.in_docker_machine('default')
dock_xctr.docker.run('ubuntu:latest', net='none',
 rm=seashore.NO_VALUE,
 interactive=seashore.NO_VALUE,
 terminal=seashore.NO_VALUE,
 volume='/myvolume',
 env=dict(AWESOME='TRUE')).interactive()

API

Executor

Construct command-line lists.

NO_VALUE – indicate an option with no value (a boolean option)

	
class seashore.executor.Command(name)

	A command is something that can be bound to an executor.
Commands get automatically bound if defined as members of an executor.

	Parameters

	name – the name of a ‘Modern UNIX’ command (i.e., something with subcommands).

	
bind(executor, _dummy=None)

	Bind a command to an executor.

	Parameters

	executor – the executor to bind to

	Returns

	something that has methods batch, interactive and popen
methods.

	
class seashore.executor.Eq(content)

	Wrap a string to indicate = option

Wrap a string to indicate that the option
has to be given as ‘–name=value’
rather than the usually equivalent and
more automation-friendly ‘–name value’

git show --format, I’m looking
at you.

	
class seashore.executor.Executor(shell, pypi=None, commands=NOTHING)

	Executes commands.

Init parameters:

	Parameters

	
	shell – something that actually runs subprocesses.
Should match the interface of Shell.

	pypi – optional. An extra index URL.

	commands – optional. An iterable of strings which are commands to suppport.

The default commands that are supported are git, pip, conda,
docker, docker_machine.

	
add_command(name)

	Add a new command.

	Parameters

	name – name of command

	
chdir(path)

	Return a new executor where the working directory is different.

	Parameters

	path – new path

	Returns

	new executor with a different working directory

	
command(args)

	Prepare a command from a raw argument list.

	Parameters

	args – argument list

	Returns

	something that supports batch/interactive/popen

	
conda_install(pkg_ids, channels=None)

	Use conda to install packages

	Parameters

	
	pkg_ids – an list of package names

	channels – (optional) a list of channels to install from

	Raises

	ProcessError if the installation fails

	
in_docker_machine(machine)

	Return an executor where all docker commands would point at a specific Docker machine.

	Parameters

	machine – name of machine

	Returns

	a new executor

	
in_virtualenv(envpath)

	Return an executor where all Python commands would point at a specific virtual environment.

	Parameters

	envpath – path to virtual environment

	Returns

	a new executor

	
patch_env(**kwargs)

	Return a new executor where the environment is patched with the given attributes

	Parameters

	kwargs – new environment variables

	Returns

	new executor with a shell with a patched environment.

	
pip_install(pkg_ids, index_url=None)

	Use pip to install packages

	Parameters

	
	pkg_ids – an list of package names

	index_url – (optional) an extra PyPI-compatible index

	Raises

	ProcessError if the installation fails

	
prepare(command, subcommand, *args, **kwargs)

	Prepare a command (inspired by SQL statement preparation).

	Parameters

	
	command – name of command (e.g., apt-get)

	subcommand – name of sub-command (e.g., install)

	args – positional arguments

	kwargs – option arguments

	Returns

	something that supports batch/interactive/popen

	
seashore.executor.cmd(binary, subcommand, *args, **kwargs)

	Construct a command line for a “modern UNIX” command.

Modern UNIX command do a closely-related-set-of-things and do it well.
Examples include apt-get or git.

	Parameters

	
	binary – the name of the command

	subcommand – the subcommand used

	args – positional arguments (put last)

	kwargs – options

	Returns

	list of arguments that is suitable to be passed to subprocess.Popen
and friends.

When specifying options, the following assumptions are made:

	Option names begin with -- and any _ is assumed to be a -

	If the value is NO_VALUE, this is a “naked” option.

	If the value is a string or an int, these are presented as the value of the option.

	If the value is a list, the option will be repeated multiple times.

	If the value is a dict, the option will be repeated multiple times, and
its values will be <KEY>=<VALUE>.

Shell

Running subprocesses with a shell-like interface.

	
exception seashore.shell.ProcessError(*args)

	A process has exited with non-zero status.

	
class seashore.shell.Shell

	Run subprocesses.

Init arguments:

	Parameters

	
	cwd – current working directory (default is process’s current working directory)

	env – environment variables dict (default is a copy of the process’s environment)

	
batch(command, cwd=None)

	Run a process, wait until it ends and return the output and error

	Parameters

	
	command – list of arguments

	cwd – current working directory (default is to use the internal working directory)

	Returns

	pair of standard output, standard error

	Raises

	ProcessError with (return code, standard output, standard error)

	
chdir(path)

	Change internal current working directory.

Changes internal directory in which subprocesses will be run.
Does not change the process’s own current working directory.

	Parameters

	path – new working directory

	
clone()

	Clone the shell object.

	Returns

	a new Shell object with a copy of the environment dictionary

	
getenv(key)

	Get internal environment variable.

Return value of variable in internal environment in which subprocesses will be run.

	Parameters

	key – name of variable

	Returns

	value of variable

	Raises

	KeyError if key is not in environment

	
interactive(command, cwd=None)

	Run a process, while its standard output and error go directly to ours.

	Parameters

	
	command – list of arguments

	cwd – current working directory (default is to use the internal working directory)

	Raises

	ProcessError with (return code, standard output, standard error)

	
popen(command, **kwargs)

	Run a process, giving direct access to the subprocess.Popen arguments.

	Parameters

	
	command – list of arguments

	kwargs – keyword arguments passed to subprocess.Popen

	Returns

	a Process

	
reap_all()

	Kill, as gently as possible, all processes.

Loop through all processes and try to kill them with
a sequence of SIGINT, SIGTERM and
SIGKILL.

	
redirect(command, outfp, errfp, cwd=None)

	Run a process, while its standard error and output go to pre-existing files

	Parameters

	
	command – list of arguments

	outfp – output file object

	errfp – error file object

	cwd – current working directory (default is to use the internal working directory)

	Raises

	ProcessError with return code

	
setenv(key, val)

	Set internal environment variable.

Changes internal environment in which subprocesses will be run.
Does not change the process’s own environment.

	Parameters

	
	key – name of variable

	value – value of variable

	
seashore.shell.autoexit_code(*args, **kwds)

	Context manager that translates ProcessError to immediate process exit.

Release Process

In a virtual environment:

$ pip install incremental twisted click twine
$ git checkout master
$ git pull --rebase
$ git checkout -b new-release
$ python -m incremental.update --patch
$ git commit -a -m 'update to new version'
$ git push

On GitHub, create Pull Request, review and merge.

Then, back in the virtual environment:

$ git checkout master
$ git pull --rebase
$ pip wheel .
$ python setup.py sdist
$ twine upload seashore*.whl dist/seashore*.tar.gz
$ git tag v<version number>
$ git push --tags

On GitHub, create a release. Names for next few releases:

	Dimorphodon macronyx

	Squaloraja polyspondyla

	Coprolite

We base releases on the discoveries of Mary Anning [https://en.wikipedia.org/wiki/Mary_Anning]
who is the heroine of the tongue twister “she sells seashells by the seashore”.

After releasing, make sure to avoid accidental releases:

$ git checkout master
$ git pull --rebase
$ git checkout -b make-dev
$ python -m incremental.update seashore --dev
$ git commit -a -m 'prevent accidental releases'
$ git push

On GitHub, review and merge.

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 seashore	

 	
 	
 seashore.executor	

 	
 	
 seashore.shell	

Index

 A
 | B
 | C
 | E
 | G
 | I
 | P
 | R
 | S

A

 	
 	add_command() (seashore.executor.Executor method)

 	
 	autoexit_code() (in module seashore.shell)

B

 	
 	batch() (seashore.shell.Shell method)

 	
 	bind() (seashore.executor.Command method)

C

 	
 	chdir() (seashore.executor.Executor method)

 	(seashore.shell.Shell method)

 	clone() (seashore.shell.Shell method)

 	
 	cmd() (in module seashore.executor)

 	Command (class in seashore.executor)

 	command() (seashore.executor.Executor method)

 	conda_install() (seashore.executor.Executor method)

E

 	
 	Eq (class in seashore.executor)

 	
 	Executor (class in seashore.executor)

G

 	
 	getenv() (seashore.shell.Shell method)

I

 	
 	in_docker_machine() (seashore.executor.Executor method)

 	
 	in_virtualenv() (seashore.executor.Executor method)

 	interactive() (seashore.shell.Shell method)

P

 	
 	patch_env() (seashore.executor.Executor method)

 	pip_install() (seashore.executor.Executor method)

 	
 	popen() (seashore.shell.Shell method)

 	prepare() (seashore.executor.Executor method)

 	ProcessError

R

 	
 	reap_all() (seashore.shell.Shell method)

 	
 	redirect() (seashore.shell.Shell method)

S

 	
 	seashore.executor (module)

 	seashore.shell (module)

 	
 	setenv() (seashore.shell.Shell method)

 	Shell (class in seashore.shell)

 nav.xhtml

 Table of Contents

 		
 Seashore

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

